Appendix L
Spherical Shell Geometry

For solar zenith angles greater than about 80° and twilight situations,
we have to take the curvature of the earth into account and solve the ra-
diative transfer equation appropriate for a spherical shell atmosphere.f
The geometry is illustrated in Figure AL.1.

In spherical shell geometry, the derivative of the intensity consists of
three terms in addition to the one term occurring for slab geometry.
These additional terms express the change in the intensity associated

1 The treatment of spherical geometry is described in: V. V. Sobolev, Light Scattering in Plan-
etary Atmospheres (Transl. by W. M. Irvine), Pergamon, 256 pp., 1975.
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Fig. AL.1. Tllustration of plane versus spherical geometry. (a) In plane geometry
the slant path is the same for all layers of equal geometrical thickness. (b) In
spherical geometry the slant path changes from layer to layer.



2 Spherical Shell Geometry

with changes in polar angle, azimuthal angle, and solar zenith angle.
Hence, for a spherical shell medium illuminated by a direct (collimated)
beam of radiation, the appropriate radiative transfer equation for the
diffuse intensity may be expressed as (see §6.4)

Q ’ VI(T"U’ 457 ”0) = —k(r)[I(r,u,gb, ”0) - S(r,u, ¢, MO)] (Ll)

Here r is the distance from the center of the planet and k is the ex-
tinction coefficient, while v and ¢ are the cosine of the polar angle
and the azimuthal angle, respectively. The symbol - V denotes the
derivative operator or the ‘streaming term’ appropriate for this geom-
etry. To arrive at this term we must use spherical geometry. If we
map the intensity from a set of global spherical coordinates to a local
set with reference to the local zenith direction, then as explained in
Appendix O, the streaming term becomest
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where the factor f is given by

Fluy0) = VI — w21 - i3, (L.3)

For slab geometry, only the first term contributes. The curvature
gives rise to additional terms. Thus, for spherically symmetric geome-
try, the second term must be added, while the third and fourth terms
are required for a spherical shell medium illuminated by direct (colli-
mated) beam radiation. The source function in eqn. L.1 is

a’(’r) m / L ! ! / ! /
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-I-a4(—r)p(7", 110, Go; u, §) e TR THO), (L.4)
T

1t The derivation of the ‘streaming’ term given in Appendix O is taken from: A. Kylling: Ra-
diation Transport in Cloudy and Aerosol Loaded Atmospheres, Ph. D. Thesis, University of
Alaska, Fairbanks, USA, 1992, and the discussion of the azimuthally-averaged equation from:
A. Dahlback and K. Stamnes, A new spherical model for computing the radiation field available
for photolysis and heating at twilight, Planet. Space Sci., 39, 671-683, 1991.
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The first term in eqn. L.4 is due to multiple scattering and the second
term is due to first-order scattering. We have used the diffuse/direct
splitting so that eqn. L..1 describes the diffuse radiation field only. We
note that for isotropic scattering, the primary scattering ‘driving term’
becomes isotropic, which implies that the intensity becomes azimuth
independent. The argument in the exponential, Ch(r,u), is the air-
mass factor or the Chapman function: the quantity by which the vertical
optical depth must be multiplied to obtain the slant optical path. For
a slab geometry, Ch(r, uo) = 1/po = secy. Other properties of Ch(r, p10)
are explored in Problems L.1 and L.2. Hence exp[—7Ch(r, uo)] yields
the attenuation of the incident solar radiation of flux F* (normal to the
beam) along the solar beam path.

We find that eqn. 1.4 may be written as follows

S(r,u, ¢a HO) =
2N—1

2w 1
o f, o [, L; (2~ dom)p™ (v, o u) cos m( — ¢) | 1(r, o, @)
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+ l > X§(7,u) cosm(¢p — ¢0)] e~ TCh(r,p0) (L.5)
m=0

where p™(7,v',u) and X{*(r,u) are defined by eqns. 6.33 and 6.36.

AL.1 “Isolation” of Azimuth Dependence

The extra derivative terms in eqn. L.2 makes the spherical geometry
case more difficult to treat than the corresponding slab problem. In
general, we could expand the intensity in a Fourier series containing
both sine and em cosine terms to account for the appearence of both
types of terms in the derivative operator. However, if the effects of
sphericity are small, it is useful to treat the second, third, and fourth
derivative terms in eqn. L.2 (which are due to the spherical geometry)
as a perturbation. Thus, if we ignore these terms, we are left with a
plane parallel problem to solve and the derivative terms can be included
in an iterative manner by utilizing the plane parallel solutions. Then,
since the first term in eqn. L.5 is essentially a Fourier cosine series,
and the diffuse intensity described by eqn. L.1 is driven by the second
term in eqn. L.5, which contains only cosine terms, we may expand
the intensity as previously expressed by eqn. 6.34 ignoring sine terms.
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This is because we have assumed that the third and fourth terms in
eqn. L.2, which contain sine terms, can be treated as a perturbation and
hence can be evaluated in an iterative manner from the plane parallel
solutions.

With these assumptions, eqn. L.1 becomes

25 {uafm<r,u,uo) L 1-ugorr
or T ou
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+ E(r) [I™(r,u, po) — Sm(r,u,uo)]} cosm(pg — @) = J(r,u, d, po)-
(L.6)

Here

1
S™(r,u, po) = —a(;)/ pm(r,u',u)Im(r,u')du'+X6"(r,u)e_70h("“°) (L.7)
-1
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In the following example, we describe how the equations may be solved
in a simplified geometry.

Example: Zenith Sky and Mean Intensity — Iterative Approach

If we are interested in only the zenith sky intensity (which is azimuthally independent), then
only the m = 0 term in eqn. 6.34 contributes. For m = 0, the second term in eqn. 6.34 is identically
zero. Upon averaging over azimuth the first term becomes proportional to OI'(r,u, ug)/duo and
may also be discarded if our interest lies solely in the zenith sky intensity. Thus, the zenith sky
intensity is obtained by setting J(r,u, o) = 0 in eqn. L.6 and solving it for m = 0 only. Similarly,
for isotropic scattering there is no azimuth dependence and the complete solution is again arrived
at by setting J(r,u, po) = 0 in eqn. L.6 and solving the equation for m = 0 only.

If our interest is in photolysis and heating rates, only the mean intensity is needed. We therefore
average eqn. L.6 over azimuth to obtain (see also Appendix O):

210 pi0) | 1~ O1°
or T ou
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where SO(r,u, pg) is obtained by setting m = 0 in eqn. L.7 and

1 8I' (r,u, o
JI(T7U1N0|II) = _f(ualto)#
2 Opo
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- g

We note that J; and Jy depend functionally on the first azimuth-dependent Fourier component
of the intensity, I', as indicated. Dividing by —k(r), and introducing dr = —k(r)dr, we obtain

1
w0 _ g0y - 20 / du'p(r, o u) (1, = S (7,)
or 2 .

where
1—w?dl 1

kr Ou + kr (J1 4 J2). (-9)
To simplify the notation, we have dropped the m = 0 superscript. If we ignore the three last terms
in the expression for S*(7,u), we are left with an equation which is identical to that obtained
for plane geometry except that the primary scattering term is evaluated in spherical geometry
using the correct path length. We shall refer to this approach, in which the primary scattering
driving term is included correctly but the multiple scattering is done in plane geometry, as the
‘pseudo-spherical’ approximation. Having obtained a ‘pseudo-spherical’ solution, we may proceed
to evaluate the terms we neglected and then solve the equation again including those terms.
Repetition of this procedure provides an iteration scheme that is expected to converge if the
perturbation terms (i.e., the three last terms on the right side of eqn. L.9) are small compared
with the driving term. We shall provide an example of this approach later in the book. Suffice
it to say here that this approach has been found to be quite useful for obtaining both the mean
intensity and the zenith sky intensity in twilight situations.

5*(1,u) = Xo(r(r),u)e~TCkHol 4

In a stratified planetary atmosphere, spherical effects (i. e., the angle
derivatives), become important around sunrise and sunset. Thus, the
first term in eqn. L.9 is the dominant one and the other terms may be
treated as perturbations. It has been shown (by using a perturbation
technique to account for the spherical effects) that in a stratified atmo-
sphere, mean intensities may be calculated with sufficient accuracy for
zenith angles less than 90° by including only the first term in eqn. L.9,
when spherical geometry is used to compute the direct beam attenua-
tion. Then, we may ignore all angle derivatives and simply write the
streaming term as

a.veul (L.10)
or
While this ‘pseudo-spherical’ approach works adequately for the com-
putation of intensities in the zenith— and nadir-viewing directions, and
mean intensities (for zenith angles less than 90°), it may not work for
computation of intensities in directions off-zenith (or off-nadir) unless
it can be shown that the angle derivative terms are indeed small.



6 Spherical Shell Geometry
AL.2 Problems

1. The optical depth in a curved atmosphere is required to compute
the attenuation of solar irradiance. For an overhead sun, the vertical
optical depth between altitude zy and the sun is

T(20,v) = /Z:O dzk(z,v)

where k(z,v) is the extinction coefficient at frequency v, and dz is mea-
sured along the vertical. For a non-vertical path dz must be replaced
by the actual length along the ray path. In slab geometry the actual
path length along a ray is simply dz/uo where pg is the cosine of the so-
lar zenith angle. In spherical geometry the situation is somewhat more
complex. Then dz must be replaced by the actual ray path through a
curved atmosphere.

(a) For solar zenith angles 6y < 90°, use geometrical considerations
to derive the following expression for the optical depth between level
zp and the sun in a spherical atmosphere

k(z,v)
V- (52) -

where R is the radius of the planet and z, the distance above the Earth’s
surface.

(6 < 90°)

o0
T(ZOaVHU'O) = / dz
20

(b) Similarly for 6y > 90° show that the following expression applies

R+ 2z

1
© R+ z 2 2
_/20 dzk(z,v) ll - (R+z> (1—#%)]
where z; is a screening height below which the atmosphere is essentially
opaque to radiation of frequency v.

7(20, v, p0) = 2/:dzk(z,y) ll_(R+Zs>2]_%

For practical computations we may divide the spherical atmosphere
into a number of concentric shells. Let Ah; denote the (vertical) thick-
ness of the shell lying between r; (r; = R+2z;) and rj11 (rj41 = rj—Ah;)
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where z; is the vertical distance from the surface of the planet to loca-
tion r;. (Note that ry is at the top of the atmosphere and r;4; is at
the bottom of the deepest layer (shell) considered if the atmosphere is
divided into L concentric shells.)

(c) Show that approximate expressions for the optical depth that
may be used in practical computations are given by

p AS.-
T(T, v, po) = ZAT;’ (A—ij> 6o < 90°
j

AS; = AS; AS .
7(7, v, po) ZATj ( >+2 Z AT (Ah )—l—ATL (Ahi) (6o > 90°).

j=p+1

Here L is the layer in the atmosphere below which attenuation is com-
plete, 7; is the vertical optical depth of shell j, and

ASj = \fr2 —r2(1— pd) — \Jr2,, —12(1 — 1)
where r; and r;, are the distances from the center of the planet to the

upper and lower boundary, respectively of layer j, and r, is the distance
from the center to the point at which the optical depth is evaluated.

2. (a) Show that the Chapman function may be written

N(z,0)

n(z)

Ch(X,0) =

o0
=/ dY exp[—vV X2 +2XY cosf + Y2 + X].
0

Here X = Rg/H,Y = z/H, and N(z,0) is the slant column number for
a spherically-symmetric exponential atmosphere. (b) Defining InV =

—VX24+2XY cosf +Y? + X, show that

dV(1 —-InV/X)
h(X,6) .
/ \/ +sinf — 111V)( sm@—lnTV)

(c) Using the relationship

_g2

/1L —2652/00(156
0 V& —InV ¢
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show that, on neglecting terms of order X!,

Ch(X,0) = V2XeX " 0/2[] _ erf(,/X/2 cos 0)]
where erf is the error function.

(c) Show that, to order X 2, that

_ 2{652
" cosf

Ch(X,90) [1—erf(¢)]

where ¢ = /X/2cot 6.
(e) Show that Ch(X — o00,8) — sec@ for both forms (c) and (d).



